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Current  needs for high-reliability,  reusable  software;  rapid,  evolutionary  development; 
and verification of innovative  software  architectures  have  focused  attention onimproving 
techniques for analyzing  the  safety  and  reliability of embedded  software.  In  particular,  the 
successful application of safety-analysis  techniques  on  such  projects  depends  on  our  ability 
to  adapt  existing  methodologies  to  changing  development processes. 

Safety  analysis  techniques for high-reliability  systems  are  widely  available.  However, 
these  methods  tend  to  emphasize  full-scale,  thorough,  “one-~ize-fits-all’~  investigation of a 
system.  When a project  must  back off from this  paradigm,  due  to  cost,  schedule,  or  personnel 
constraints,  guidelines  are  lacking.  The work described  here  addresses  this  problem by 
investigating  the  adaptive  use of software  safety  techniques  for the  integrated  analysis of 
software  and  system safety. The  types of adaptation  include  adaptation  to  leverage  existing 
documentation;  adaptation  to  current  project  concerns;  adaptation  to  component-based, 
embedded  software;  and  dynamically  adapting  the  next  analysis  step based  on the  results of 
prior  phases. 

The work reported  here  integrates two  successful  safety analysis  techniques which have 
been  used separately on software  and  hardware  into  the  system  hazard  analysis.  This process 
combines  Software  Failure  Modes  and  Effects  Analysis (SFMEA)  and Software  Fault  Tree 
Analysis (SFTA) in a way that  can  be readily  adapted  to a particular  project’s evolving 
system needs. The  adaptive,  integrated  approach was used  on  two  recent space  instruments: 
the Mars  Microprobe  Project  and  the  Earth  Orbiting  System’s Microwave Limb  Sounder. 
Descriptions of related work, of the  applications, of sample  results, of an  experimental web- 
based  support  tool,  and of the significance and consequences of the  results  are  summarized 
in  the  experience  report. 

Finally, the  main lessons learned  from  this  experience  are  discussed.  These  attributes of 
the  adaptive verification are  recommended  elements of any  similar process: (1) flexible  use, 
(2) a  risk-driven  rather  than  sequential  approach, (3) “zoom-in/zoom-out~7  use, (4) SFMEA 
and SFTA as complementary  techniques, (5) preserving  traceability,  and (6) applicability to  
fault  protection  software. 
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Abstract 

Current  needs  for  high-reliability,  reusable  software;  rapid,  evolutionary develop- 
ment;  and verification of innovative  software  architectures  have  focused  attention  on 
improving  techniques  for  analysing  the  safety  and  reliability of embedded  software. 
The work reported  here  integrates  two successful safety  analysis  techniques  which  have 
been  used separately  on  software  and  hardware  into  the  system  hazard  analysis.  This 
process  combines  Software  Failure  Modes and Effects  Analysis (SFMEA)  and Soft- 
ware Fault Tree Analysis (SFTA) in a way that can  be  readily adapted  to a particular 
project’s evolving system  needs.  The  technique was  used on two  recent  space  instru- 
ments: the  Mars  Microprobe  Project  and  the  Earth  Orbiting  System’s Microwave  Limb 
Sounder. The  main lessons  learned  from  this  experience  are  discussed: (1) flexible  use, 
(2) a risk-driven rather  than  sequential  approach, (3)  “zoom-in/zoom-out”  use,  (4) 
SFMEA  and  SFTA  as  complementary  techniques, ( 5 )  preserving  traceability,  and (6) 
applicability to  fault  protection  software. 
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1. Introduction 
This  paper describes the  integration of two software safety techniques,  Software Failure 
Modes and Effects Analysis (SFMEA) and  Software  Fault  Tree  Analysis (SFTA) into  the 
system  engineering process. The  application of these  techniques on  two spacecraft  instru- 
ments  and  experience  from  their  use  are  presented.  This work is an  extension of previously 
reported work on  integrating software and  system safety [9]. 

The  motivation for the work described here derives  from the changing  needs of the  project 
developers. Current needs for higher  reliability, rapid  development,  reusable software, and 
innovative software architectures  have focused attention on improving design verification 
techniques.  In  particular,  the successful application of safety-analysis techniques on such 
projects  depends on our  ability to  adapt  existing  methodologies  to  changing  development 
processes. 

Safety  analysis  techniques for high-reliability systems  are widely available. However, 
these  methods  tend  to  emphasize full-scale, thorough, “one-size-fits-all”  analysis of a sys- 
tem.  When  a  project  must back off from  this  paradigm,  due  to  cost, schedule, 07. personnel 
constraints, guidelines are lacking. The work described here  addresses  this  problem by inves- 
tigating  the  adaptive use of software  safety  techniques for the  integrated analysis of software 
and  system safety. The  types of adaptation, described  in  Section 3, adapt analyses to ex- 
isting  documentation;  to  current  project concerns; to  component-based,  embedded software; 
and  dynamically  adapt  the  next analysis step  to  results of prior analysis  phases. 

The  adaptive use of safety  analysis  techniques is part of a growing interest in software 
engineering  practices that  target high-risk or high-usage  areas for attention  rather  than  ap- 
plying a practice  uniformly  to all areas or components.  The  fact  that  these practices are 
sometimes called Ugood-enough”  (e.g.,  “good-enough  testing”) identifies the challenge to 
critical  systems. On the one hand, high-reliability systems  may  not  be  able  to afford the risk 
that  “go~d-enough’~  practices  entail. On the  other  hand,  a careful and  prioritized  application 
of these  adaptive  analytical  techniques  may yield higher reliable components  than  other op- 
tions  available to  small  projects  with  tight cost and  schedule  constraints.  This  paper  reports 
the  application of these  adaptive  practices  to  components on  two  space  instruments,  the 
New Millenium  Program Mars  Microprobe  Project (MM) and  the  Earth Observing  System’s 
Microwave  Limb Sounder (MLS) [a ,  131. 

The rest of the  paper is organized as follows. Section 2 presents  related work and explains 
the design analysis  techniques  on  which  this work is based.  Section 3 describes the four types 
of adaptation which were applied  to  the  integrated software and  system  analyses. Section 4 
provides  details of the  experience  and presents the results.  Section 5 summarizes  the lessons 
learned  from  these  applications  and  extracts  some key elements  which  are  recommended for 
any  similar process. 

2. Related Work 
The  contribution of this  paper is to  report  experience with the  adaptive  application of 
integrated software and  system safety techniques.  The  techniques  that  this work  is based on 
are  well-documented  and widely used.  Consequently,  only brief descriptions  with  pointers 
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to  further work are given here. 
FMEA (Failure Modes and Effects  Analysis)  has  been widely used  for  design  analysis  in 

military  and  industrial  applications since the mid-sixties.  Several  FMEA  standards  exist, 
including  a U.S. Military  standard, a NASA standard,  and a SAE (Society of Automotive 
Engineers)  standard.  See [ll] for a description  and bibliography. 

SFNIEA (Software  Failure  Modes  and  Effects  Analysis) is a design  analysis  method  that 
explores the effects of possible  software failure  modes on the  system. SFMEA is an  extension 
of hardware FMEA. SFMEA has  been used  on flight projects at Jet  Propulsion  Laboratory, 
primarily  to verify the correct  functioning of system-level  fault  protection  software. 

Briefly, SFMEA is a structured,  table-based process of discovering and  documenting  the 
ways in which  a  software component  can  fail  and  the consequences of these  failures.  It is 
most  frequently used during  the design phase,  but  has also  been  used during  the  requirements 
phase.  The SFNIEA process is guided by a set of standardized  failure  modes  (e.g., “Wrong 
timing of data,”  “Abnormal process termination”) which the  analyst  considers  in  turn.  The 
SFMEA is a form of forward  (bottom-up)  analysis.  The process traces the propagation of 
anomalies  from  causes  (failure  modes) to  local (subsystem or component) effect‘s to global 
(system) effects  [7, 10, 161. 

FTA (Fault  Tree  Analysis) is a hazard  analysis  technique that works top-down  from 
an identified  undesirable  event  or  hazard  to discover its possible  causes [5 ,  7, 191. FTA 
uses  Boolean logic to decompose  an  undesirable  event  into  the  preconditions  that led to  the 
event’s  occurrence.  It is widely used in  the  systems  and  hardware  areas [l , 61. 

SFTA (Software  Fault  Tree  Analysis) uses a similar  method  to  analyze  software code or 
detailed design [SI. Rushby  identifies  as the goal of SFTA, “to show that a  specific  software 
design will not  produce  system  safety  failures or, failing that, to determine  the  environmental 
conditions that could  lead it  to  cause  such  a  failure” [18]. 

Some  researchers  have  performed SFMEA as  a preparatory  activity  to  fault  tree  construc- 
tion  [15].  Others  have  recommmended first  performing  a  search for causes (as  in a FTA) 
and  then  considering  the  effects of each  failure  (as  in  a FMEA) [17]. Combining forward and 
backward  analyses,  or the  bottom-up SFNIEA with  the  top-down SFTA, has  been  found  to 
be effective in  understanding  underlying  combination of circumstances  that  enable  a  failure 
mode to occur, as well as the likelihood of the identified  failure mode [4, 10].The effectiveness 
of the SFNfEA is  also  increased  by  integrating  it  with  existing  system FMEA or system FTA. 

3. Adaptive  Safety  Analysis  Techniques 
The  application of the  integrated  software  and  system  analyses  to  the  two  instruments is 
described  in  Section 4. Here we introduce  the  four  types of adaptation  that  these  applications 
entailed. 

The investigations  performed  in  these  applications  used  four  types of adaptive analyses: 

1. Adaptation  to existing  documentation. 
In  both  projects,  the  analyses  leveraged off existing  documentation. For example,  an 
existing  system-level  fault  coverage  matrix was chosen as  the  initiating  point of the 
safety  analysis for three  components  on  Mars  Microprobe (MM). Those  faults  handled 
by  software  then served as  the failure  modes of the high-level SFNIEA. On Microwave 
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Limb  Sounder(MLS),  where  component-level FNfEAs and  FTAs  already  existed,  the 
natural choice was to  further  extend  the leaf nodes that involved software into  more 
detailed  SFTAs. 

2. Adaptation  to specific project  concerns. 
In  both  projects,  the  developers were able  to point to  areas or scenarios  which merited 
additional  attention. In general,  the  developers  wanted  further  assurance  that  a failure 
of the fault  monitoring  and recovery software could not prevent  (although it might 
degrade) mission success. Verification of fault coverage, i.e., that the software assigned 
to  handle known  fault  scenarios did so reliably, was useful to  the MM developers. 
On MLS, the developers were interested  in software interactions  that could affect the 
components in unforeseen ways. 

3. Adaptation  to component-based,  heavily embedded software. 
On both  projects,  the software was heavily embedded in hardware  components  that 
involved leading-edge technology. The software was highly coupled  with the  hardware, 
monitoring  and controlling it. On  both  projects, correct functioning of the  Gmponents 
was critical to  the mission’s success. In general,  attention  during  early  development 
had focused primarily  on defining the  hardware  and  the  hardware/software interfaces, 
rather  than on designing the  software, As a consequence, we used techniques that 
could integrate  the  system  and software  analyses. The  emphasis was on  investigating 
the software that  monitors  and  responds  to  system failures, the  contributing software 
causes of system failures, and  the  system effects of software failures. 

4. Adaptation  to let prior  results  drive  the  next  analysis  phase. 
The  next  step of an analysis of a component was chosen dynamically based on the 
concerns  remaining  at  the  end of the previous stage of the analysis. For example, on 
MLS the existence of common software  failure  modes in the FMEA drove the choice 
of a SFTA as the  next  step.  The SFTA used these  common  failure  modes as root 
nodes  and  expanded  each  sub-node  until  a basic fault  event was reached or no further 
analysis could be  performed. 

Figure 1 summarizes  the  integration of software and  system analyses. The  Fault Coverage 
Matrix at the  top of the figure was used by MNf to document  system failures and  the software 
or hardware responsible for their  avoidance or recovery. The second row of Fig. 1 shows 
how FTAs  and  SFTAs link failure  causes  and  failure  events, while FMEAs  and  SFMEAs 
link  failure  modes  and  failure effects. Both  SFTAs  and  SFMEAs were used to  evaluate  the 
software’s robustness against  failure. 

The heavy lines in  Fig. 1 show the  direction of the analyses performed  on  one or more of 
the  components.  The  dashed lines  show how the results of the  analyses  provide verification 
or insight into  fault  mitigation  and  fault  handling  strategies.  In  general,  adaptive analyses 
proceeded  downwards in the figure from  system  to  component  to software emphases. Tech- 
niques  on the right  side of the figure  tended  to  be used for verification of design coverage; 
techniques on the left side for  understanding of design interactions.  Horizontal  movement 
(e.g.,  from SFMEA to SFTA) has  been  established elsewhere as a useful way to combine the 
strengths of a  forward  and  backward  search, but was not performed  here  since the emphasis 
was on integrating  the software and  the  system analyses [12]. 
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Figure 1: Overview of Analysis Elements 

4. Results 
This section  describes the results of the  adaptive  applications of the  integrated safety  analyses 
to  the New Millenium  Program Mars  Microprobe  Project (MM)  and  the  Earth Observing 
System’s Microwave  Limb  Sounder (MLS). Due  to  space  limitations,  only  sample  results  are 
presented  here. See [9] for a fuller description of the results. 

4.1 Mars Microprobe 

The Mars Microprobe  Project (MM),  also known as the Deep  Space 2 (DS-2) mission, consists 
of two identical  microprobes that will penetrate  the  Martian surface [13, 141. MM launched 
onboard  the Nlars Polar  Lander  in  January, 1999. The mission will validate technologies that 
will enable  future  planetary network missions (e.g. simultaneous  deployment of multiple 
landers,  penetrators,  etc.) while at  the  same  time collecting  meaningful science data on 
Martian soil conductivity, meteorology, and  subsurface ice. 

We worked with  three MM components  that  are essential for mission success: Impact 
Detection (to  detect  the  landing on  Mars and  penetration of the  microprobe for initiation 
of science activities),  the  Water  Experiment  (to  detect possible subsurface ice in a soil sam- 
ple),  and  Telecommunications  (to  send  data  from  the  microprobe back to  the  orbiter for 
transmission to  Earth). 

On MM, the  project  had  already  produced  a system-level  fault-coverage table, which 
we used as the failure  analysis baseline. The  table was included  in the  Mars  Microprobe 
Spacecraft Design document [14]. The  table,  entitled  “Fault Coverage,’’ listed for each key 
function  (e.g.,  telecommunications)  the  types of faults  that could occur  (e.g., loss of uplink, 
loss of downlink,  etc.)  and  the coverage that is provided for each of these  fault  types. Some of 
the fault  types involved hardware failure;  some involved software  failure; and  some involved 
both.  The coverage for some  faults was, at least  in part, software-based.  Response to 
these  faults usually entailed  software control of hardware devices. Onboard  fault  protection 
software  exists to aid in recovery from failures during  the science phase of the mission. 
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4.1.1  Impact  SFMEA 

The initial  analysis  sought to verify the  adequacy of the software handling of the fault  types 
described  in the  system-level  fault coverage table. We did this by performing SFMEA for 
the  three  critical  functions  described above. The  objectives  included  identifying  critical 
software  failures and assessing the  appropriateness of the fault  avoidance  and  mitigation  and 
of the recovery sequence. For example,  one of the MM components  studied was the  Impact 
Detection.  The  impact-related  fault  monitor  and  response  as well as the event  sequence 
(consisting of the  Impact Loss Wlonitor, the Accelerometer-Off Response,  and  the  Impact 
Detection  and  Penetration  Measurement) were evaluated. 

This  study yielded the following results: (1) clarification of sequence  and  fault  response 
and clarification of a software  variable in an  anomalous  event; (2) recommendation of test 
cases; and (3) identification of a software fault  avoidance  strategy.  Some key questions 
involving unclear  definitions and missing information for anomalous scenarios  also  surfaced 
during  this  study.  These findings were considered by the Design Engineer for inclusion  in a 
future  document  update. Several  failure entries  marked in the SFMEA as  medium  to high 
criticality  failures  were  identified as verifiable in test (;.e., tests  can  be  performed  to verify 
the absence of potential  faults).  Recommendations were then  made  to  the  Project  to include 
these  test cases. 

Most of the highly  critical  failures involved software hang-up  (halt).  Depending on when 
in the event  sequence the  hang-up  occurs,  such  hang-ups can cause missed science experiment 
data (even with fault  protection  and recovery sequences in working order). A discussion 
with the software  developer (a domain  expert) was conducted  to identify  sources  leading to 
possible software hang-up.  It  turned  out  that  a  potential software hang-up  exists when a 
particular  assembly  command is executed  at  the  same  time  that  a  certain  built-in  interrupt 
timer goes off. Therefore,  the software hang-up  may be sporadic  and difficult to debug. A 
fault  avoidance  method was recommended by the domain  expert  to  alleviate  this  problem. 

4.1.2 Integrating  System and Software FMEAs 

A subsystem  (component-level) FMEA table was constructed for the Telecom system  with 
the  information  obtained  from  the  system design document [14]. This exercise  showed that 
performing FMEA on a  critical  (sub)system,  component, or function could help  identify 
areas  requiring  fault  monitor  and  response  modules.  These  monitor  and  response  modules 
are identified  in the Failure Detection/Correction  column of the FMEA table. 

The  subsystem Fh4EA table  and  the  subsequent  fault  monitor  and  response design lay 
the groundwork for the top-level (requirements/design-level) software  safety  analyses. In  our 
study,  three essentail  software-controlled monitor  and  response  modules  from  the Telecom 
subsystem FMEA were expanded  into  the top-level SFMEA. 

At the time when we were conducting  this SFMEA study,  the MM Project was transi- 
tioning  into  test  phase. As it turned  out, all the highly critical  software  failures  identified 
in this  study were verifiable  in test for software  implementation correctness. Therefore, rec- 
ommendation was made  to  the  project  for inclusion of these  failure  scenarios  in  their  test 
cases. 

Some of the lessons learned  during  the  application of the  integrated  safety  techniques 
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on MM were considered to  be  transferable technology. These lessons are  summarized in 
Section 5 and  formed  part of the  input  to  the process for MLS analysis.  Since MLS is at 
an earlier phase of development than MM, the system-level  analysis  performed to  date has 
been  primarily  hardware-oriented.  Techniques  such  as SFMEA that focus on the software’s 
contribution  to  system  fault coverage can  be used to  expand analysis of critical  components 
or capabilities. 

4.2 Microwave Limb Sounder 
The  Earth Observing  System  Microwave  Limb  Sounder (MLS) instrument,  currently  under 
development, will support  an  investigation  to  improve  understanding  and  assessment of 
stratospheric ozone depletion  and  chemistry,  tropospheric ozone distribution  and  chemistry, 
and  climate  change  and  variability [2, 31. The MLS instrument will measure  naturally 
occurring microwave thermal  emission  from  the  limb of Earth’s  atmosphere  to  remotely 
sense  vertical profiles of selected atmospheric gases, geopotential  height,  temperature  and 
pressure. The MLS instrument will  fly on the EOS Chemistry  platform  to  be l’aunched in 
December, 2002. 

In the MLS project,  the component-level  FMEAs were reviewed for potential failures 
where  software might play a  part. It was found that  similar  failure  types  appeared  among 
the component-level FMEAs. For example,  the “Loss of Bus  Synchronization”  failure  mode 
appears in two component  FMEAs.  When  appropriate, we generalized these  common failures 
when  performing the top-level SFTA. Each of the selected  failures became  the top-level 
hazardous  event  (root  node) of a SFTA. For each root  node hazard, we worked  backwards 
(top-down),  expanding each sub-node  until  a basic  event was reached (a leaf of the fault 
tree), or until  no  further analysis could be  done. 

A discussion with  the software  engineer on  the  SFTAs yielded several follow-up items 
and a few proposals for further analyses.  Feedback  from the software  engineer was incorpo- 
rated  into  the final SFTA. The software  engineer  felt that  this was a worthwhile  exercise  in 
evaluating all the possible failures/faults  and  their  avoidance  and  mitigation. 

Four MLS component-level  FTAs were also reviewed. Faults (or leaf nodes of Fault 
Trees) that  may  be  attributed  to software  failure were identified. These selected component 
faults  became  the  root  node  hazard (or the  root of a fault  tree) for the  next lower-level 
FTA, in  this case, the top-level SFTA. The  same SFTA procedure was performed as in the 
component-level FMEA to top-level SFTA study. 

In  system  and  component level FMEAs  and  FTAs,  the analyses are  most  frequently 
hardware-parts  oriented.  Software  and  operational  attributed  faults at the  system or com- 
ponent level are  often left out.  The NfLS top-level SFTAs also validated  the  adequacy of 
software commands for the control of hardware  mechanisms. 

The  SFTAs identified the following types of fault  tree leaf nodes: 

0 Software  faults verifiable in test: e.g., command  format  error,  telemetry  transmission 
scheme  compatibility 

0 Lower-level (source  code) analysis required: e.g., the need to  determine  software/mechanis 
m  behavior  resulting  from  out-of-range  command  parameters 
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0 Operational  errors:  e.g., incorrect command  sequence 

0 Hardware-attributed  faults:  e.g., electronic  noise-induced  command  bit  drop  in the bus 

0 External  faults:  e.g., spacecraft telemetry  pickup  error. 

Additional findings from  the top-level  software FTA include: (1) Further analysis required: 
e.g., instrument/software  behavior resulting  from executing a command in an  inappropriate 
mode; (2) Follow-up cases identified:  e.g., to  determine  an  appropriate reset mechanism; (3) 
Workarounds  identified:  e.g., capability for in-flight software update  to  respond  to  faulty 
register memory  map. 

4.3 Web-Based Support 
Data  from safety analysis  can  become massive and  unmanageable. To manually sift through 
these  data for specific information is tedious and  carries  the risk of inadvertently overlooking 
critical data. 

A web-based database  application can link upper-level  safety  analyses to lower-level anal- 
yses. For example,  a  system FMEA can be linked to  a  component-level FMEA, and  these 
can be linked to specific software and  hardware  FMEAs.  This allows better  traceability 
of safety-critical  elements  from the  system  to  the software and  the  hardware,  and  to  their 
fault  avoidance or mitigation  strategies.  Depending on the  project’s needs,  links to safety 
requirements,  tests,  event sequences or design can also be  implemented.  The tool  can also 
provide  options to  perform searches  in specific areas of interest, such as failure  criticality, 
failure modes, or affected requirements.  Restricted  editing  capabilities  can  support on-line 
updates. 

In an  experimental tool development,  Paul Davis created  dynamic Web pages that in- 
teracted  with  the FMEA database.  This  web-based safety  analysis application  stores  the 
FNfEA results  and provides the ability to do  search  and  report on the FMEA entries. For 
example,  a  subsystem FNfEA for Telecom is stored  as  one  table,  and  a software FMEA is 
stored as another  table. A user  can  search  on  criticality,  testability, and/or  failure  modes in 
any  selected-combination of tables.  In  retrospect,  an  additional search option  that would be 
useful is “Affected Requirements.” 

The  experimental web-based  tool demonstrated  that we could quickly locate  the infor- 
mation we needed to help us do  our work. For example, we could identify  failures that were 
identified as testable in the earlier  safety  analyses  and use this  information to follow up  in 
test  planning  and  test verification when appropriate. &lost importantly,  the safety  analysis 
results  can  be  readily accessible to  project  developers  and  analysts for follow-up and  further 
analysis of critical issues. Similarly,  safety-critical  information  can  be easily available  for 
anomaly  impact  analyses  and for requirements or design change  impact assessments. 

.c 

5 .  Conclusions 
The lessons learned in the  adaptive  application of the  integrated software and  system safety 
techniques  are  summarized below. These  are  recommended  elements of any  similar process. 



1. Flexible use. 
We found that a key advantage of the  integrated  approach is that  the focus of the 
analysis  can be  tailored  to  the needs, phase,  and available documentation of the specific 
project.  On MM this  meant using the  existing  hazards analysis work that  had been 
done as a baseline and  extending  the analysis (via SFMEA) in the  directions  that were 
of most  concern to  the  project. 

2. Risk-driven 
An advantage of the  integrated SFMEAISFTA approach is that it allows a dynamic 
re-focusing of attention  to allow prior  analysis  results to  drive  the  next analysis  phase. 
For one  component, a SFMEA followed  by a verbal  walkthrough  with  experts re- 
solved the  open issues. For another  component,  a SFMEA was later  supplemented 
by a FTA to follow up  on  some issues of concern. SFMEA and/or SFTA can  be  per- 
formed  only for those  components perceived as possibly presenting  unacceptable risk, 
or SFMEA/SFTA can  be  applied selectively to differing levels of detail on different 
components, all depending  on  the  project’s needs. . 

3 .  “Zoom-in /~oom-~~t”  use of SFMEA/SFTA 
A consequence of the flexible use of SFMEA/SFTA is that  it can provide  a  “zoom- 
in/zoom-out”  approach  to analysis of critical  components. Selective targeting of issues 
of concern, designs that  have  changed, or areas  that raise unresolved questions is 
possible. A “zoom-in”  can  be chosen to  examine  more closely a  particular piece of the 
system or the effect  of a  particular scenario.  Similarly, a  bLzoom-out”  can be chosen to 
examine  a wider piece of the  system or the interfaces. On MM, for example,  tuning  the 
analysis to  the  evolution of the  system  meant  that  questions arising during  the  initial 
analysis of one  component  (Impact  Detection) led both  to  a quick “zoom-out” review 
of the system-level interface FMEA (to check if there were any  related software  issues) 
and to a  “zoom-in” on the SFMEA issue regarding  software  hang-up (to  investigate 
the  fault  avoidance  strategy). 

4. SFMEA and SFTA as complementary techniques 

SFMEA and SFTA have a well-deserved reputation as complementary  techniques (see 
Section 2). In  particular,  the  combination  has been used to identify unexpected de- 
pendencies  and  interactions in the  system. On M M  we primarily  performed SFMEA, 
since the  project  had  already identified the critical  faults  that needed coverage in the 
system.  and  the causes of the  faults were nearly  all hardware or environmental (e.g., 
landing) failures. On MLS, we supplemented  the FMEA with  the SFTA in order  to 
trace  the possible software involvement in  failures. 

5 .  Preserving traceability 

SFMEA/SFTA can  be  performed on a  system  at  varying degrees of detail, so traceabil- 
ity between higher-level and lower-level analyses must  be  maintained.  Sometimes  the 
traceability  among levels is explicit. For example,  failure effects in a lower level FMEA 
may be  the  failure  modes in the left hand  column of a higher-level FMEA. Similarly, 
for FTA, a single node  in a high-level tree  may  be  decomposed  into a more  detailed 

9 



FTA. Web-based support,  such  as  that described in  Section 4.3, enhances  our  ability 
to manage  the  traceability. 

6. Applicability  to  fault  protection  software 

In  this  study,  our  interest was in SFMEAISFTA as safety  analysis  techniques, so we 
chose critical  fault  protection software  for the  applications. SFMEA is especially well- 
suited  to analysis of fault  protection  monitors  and responses. For monitoring  software, 
SFMEA was used to check that false-positives were not  produced  and  that  adequate 
reasonableness checks were  performed  on the values  used to  make  control decisions. 
For fault  protection  software  that  responds  to  faults, SFMEA was used to check that 
the effect of the response  (e.g.,  reconfiguration, try-again,  etc.)  matched  the  intent of 
the fault response. By  dynamically  adapting  the  integrated software and  system  safety 
techniques to  the needs and realities of the two projects, the analyses  provided some 
assurance that  the  fault coverage specified in the design document was adequate  and 
robust. 
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